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THIS PAPER PROPOSES A FRAMEWORK FOR AN INTEGRATED COMPUTATIONAL DESIGN SYSTEM. This design

system builds on the strengths inherent in both generative synthesis models and multi-performance analysis
E— Performance and optimization. Four main design mechanisms and their mathematical models are discussed and their inte-

gration proposed. The process of building the design system begins by a top-down decomposition of a design

concept. The different disciplines involved are decomposed into modules that simulate the respective design

1isms. Subsequently through a bottom-up approach, the design modules are connected into a data flow

network that includes clusters and subsystems. This network forms the Generative Multi-Performance Design
System. This integrated system acts as a holistic structured functional unit that searches the design space for
satisfactory solutions. The proposed design system is domain independent. Its potential will be demonstrated
through a pilot project in which a multi-performance space planning problem is considered. The results are

then discussed and analyzed.
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1 Introduction

Design involves solving what Herbert Simon terms an ill-structured problem (Simon, 1973).
An ill-structured problem is one that cannot be solved by a linear chain of reasoning de-
rived from the problem statement. Furthermore, it might not have a unique solution but a
multiplicity of solutions. These design problem characteristics imply the need for many as-
sumptions within the design process that can only be verified after a solution is reached.

This makes computational design systems a difficult area of study. Although recent
possibilities provided by advances in computational power and new developments in per-
formance analysis tools offer architects and engineers information that can assist in deci-
sion making, insight gained through these tools remains limited. This is due to their inad-
equate ability of searching the design-space satisfactorily. In addition, since these tools are
usually discipline specific, they lack the ability to supply sufficient understanding of the
possible tradeoffs between the different disciplines. Creating effective computational de-
sign systems requires the development of new ways to represent designs and to evaluate
their different disciplines performance collectively.

Generative synthesis models present a powerful formalism that can generate solutions
within the design space defined by the system'’s design language. Current design problems
are multi-disciplinary, and for architects and engineers to adapt to a highly competitive
global market, the need of integrating various performance criteria increases.

A design system that integrates generative synthesis models and a range of perfor-
mance analysis tools and techniques is required. This paper will present a framework for
building such a system, namely the Generative Multi-Performance Design System. The po-
tential of the design system will then be demonstrated through a pilot project application.

2 Design Models

Human problem solving including design is done using an iterative process (Simon, 1973;
Asimow, 1962; Cross, 1989; Steadman, 1979). Designs typically evolve through a cycle that
involves a synthesis mechanism and an analysis mechanism which is also known as the
generate and test cycle (Rowe, 1987).

Minsky suggests the need for an additional mechanism which he terms the progress
principle (Minsky, 1988). This is an optimization mechanism that guides the search rather
than generate blindly all possible solutions. Progress is easy to understand when only one
objective is considered, but when there are many different or even conflicting objectives
progress becomes harder to define. An evaluation mechanism is needed to handle the de-
cision process and to manage the tradeoffs between the different objectives. Together all
four mechanisms represent phases in a Synthesis, Analysis, Evaluation, and Optimization
cycle.

To understand these design mechanisms we need to model them. Models are an ab-
stract description of the real world that provides an approximate representation of more
complex functions of physical systems (Papalambros, 2000). In this paper we are con-
cerned with mathematical models. These are models that can be implemented in a com-
puter environment. We aim at building a series of mathematical models that correspond to
Synthesis, Analysis, Evaluation, and Optimization cycle.

2.1 SYNTHESIS MODELS

A design concept can be decomposed into a set of synthesis models by extracting design
intentions and formulating a collection of design parameters, rules or algorithms. This col-
lection provides for a representation of the design language which in turn defines a design
space. This mode of representation provides for a formalism that can be used within a
computational environment to breed new designs.

Synthesis models should provide for a generative mechanism. This could be done
through parametric or algorithmic descriptions. Parametric models provide for a descrip-
tion of the design through parameters and relationships that allow for variation. Algorithmic
models give a description of the design through a set of rules and algorithms. A good ex-
ample of algorithmic models is Generative Grammars. These include grammars like Shape
Grammars, Lindenmayer Systems, and Cellular Automata.

Proceedings

449

Computational Methods for Data Integration




FIGURE 2. THE FORMALISM OF THE DESIGN CONCEPT SHOW:!

Generative Grammars have been implemented in a variety of domains (Antonsson
and Cagan, 2001). Shape Grammars have been used in the generation of buildings (Stiny
and Mitchell, 1978; Downing and Fleming, 1981), and Product Design (Agarwal and Cagan,
1998). Lindenmayer Systems were originally developed to model plants (Prusinkiewicz and
Lindenmayer 1991) but have been used in many other fields for design purposes including
robotic design (Hornby and Pollack, 2001). CA's have also been used in a variety of do-
mains including building design and city planning (Batty, 2005). These Synthesis Gram-
mars are considered a form of production system (Gips and Stiny, 1980). As production
systems they provide the mechanism necessary to execute design goals.

The representation of generative synthesis models should encode design knowledge.
The relationship between form and performance should be embedded within the repre-
sentation formalism. This provides restrictions on permitted designs and ensures that the
rules discard designs that do not comply with constraints. However, since synthesis mod-
els do not include performance feedback loops, it is difficult for such models to direct the
generation and navigate the design space of multi-performance design problems.

2.2 ANALYSIS MODELS

Alexander defines analysis as the measure of how well a given solution or proposed design
solution fits the set of goals it is intended to meet (Alexander, 1964). An analysis model in-
fers from a design solution characteristics that are relevant to a particular discipline. A de-
sign problem usually combines different disciplines, with each discipline developing one or
more analysis models. Each analysis model employed should be deterministic, i.e. produc-
ing the same result at repeated calculations.

Analysis models range in their amount of required information input and their degree of
accuracy output. Low order (low fidelity) models are mainly heuristic and empirical mod-
els that derive from observation and approximate data fitting rather than from physics and
first principles. High order (high fidelity) models are theoretical models that are physics-
based and are derived using first-principle equations like finite element analysis (FEA) and
computational fluid dynamics (CFD).

In choosing a model the designer must select the best compromise between the de-
mand for simplification and the necessity to clearly identify, describe and rate the targeted
physical mechanism. A trade-off will have to be made between fidelity and analysis time.
2.3 EVALUATION MODELS
Evaluation models are in essence decision making tools. The evaluation is usually per-

SPATIAL COMPONENTS WITH INTERRELATIONS BETWEEN THEM formed by means of an objective function, which consists of a figure of merit describing

WRAPPED BY A SKIN

Proceedings

450 ACADIA 08 Silicon + Skin» Biological Processes and Computation



Rule Set 1

Rule 01

Rule 02

Rule 06

= P—
> 1.
’ @

- @

Rule Set 2

Rule 01

Rule02

Rule 01

ez @

Rule Application

Rule Set 3

Rule 01

FIGURE 3. THR

gﬁ_:: QO

B
©}

E SETS DE

N

Rule Application %

SYNTHESIS €

RAMMAR

the quality of a design solution. The formulation of the objective function is vital to the out-
come of the design space search.

In single objective optimization, the search direction can be well defined and a single
solution, if exists, could be found. However, in the real-world, decision-making problems
are usually too complex and ill-defined, and have several possibly contradicting objectives.
This implies that there is no single optimal solution but rather a whole set of possible solu-
tions of equivalent quality (Abraham et al., 2005). In this set, each objective is optimized to
the degree that if any further optimization is attempted, the other objectives will be affect-
ed as a consequence. Therefore, decisions need to be taken in the presence of trade-offs
between conflicting objectives.

Addressing multiple objective problems may require techniques that are different from
standard single objective optimization methods. It is generally accepted that an optimiza-
tion problem should have one objective to be mathematically solvable. This objective is ar-
ticulated based on the decision-maker’s preferences either before or after the search.

When the preference is expressed beforehand, the designer decides how to aggregate
different conflicting objectives into a single objective function before the actual search is
performed (Horn, 1997). A commonly adopted approach is scalarization which consists of
combining several objectives into one scalar cost function. There are different scalariza-
tion methods such as the weighted-sum approach and the utility function method among
others.

When search is performed before decision making, the search is performed with mul-
tiple objectives at the same time. The solution space becomes partially ordered with a set
of optimal trade-offs between the conflicting objectives. This set is called the Pareto opti-
mal set.

2.4 OPTIMIZATION MODELS

Optimization Models are design space search mechanisms. Searching the design space
entails finding the best solution(s) within a domain of feasible solutions. An optimization
model seeks to minimize or maximize an objective function that depends on a number of
continuous or discrete values by varying the values of those variables within an allowed
domain. The choice of an appropriate search algorithm depends on several factors includ-
ing the design synthesis model, the nature of the analysis models, the number of design
variables, the existence of constraints, and the linearity of either the design variables or
constraints.

Optimization techniques could be divided into general numerical optimization tech-
niques and heuristic algorithms. Some numerical optimization techniques that handle con-
straints include: the simplex method, sequential quadratic programming, and the exterior
and interior penalty methods among others. Numerical optimization techniques that han-
dle unconstrained problems are generally gradient based algorithms. These include New-
ton's method, steepest descent, and conjugate gradient among others.

Heuristic algorithms are generally non-gradient methods like evolutionary algorithms,
simulated annealing, and tabu search. The appeal of these methods stems from the
fact that they do not require any gradient of the objective function in order to find the
optimum.

However, no existing optimization technique is guaranteed to find the global optimum
of a nonlinear, non-convex problem. Gradient-based methods find local optima with high
reliability but might not escape a local optimum. Heuristic algorithms might find a good
solution, but its optimality can not be guaranteed since they often tend to find a different
design each time they are run.

3 The Generative Multi-Performance Design System (GMPDS)
Given a design concept with a sufficient degree of refinement our intent is to build a Gen-
erative Multi-Performance Design System (GMPDS) that can generate intelligent variations
of the concept. This system should correspond well to the synthesis, analysis, evaluation,
and optimization cycle discussed earlier.

Initially, through a top down approach the design concept will be decomposed iterative-
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ly by each discipline involved in the design. The decomposition is carried from a high-level
diagram ending in manageable elementary modules. Each module will represent one of the
four mathematical models. Modules for data storage can also be included. These are mod-
ules that store the parameters and constants of the design system. Modules that include
the design system constraints could also be implemented.

Each module has a boundary that cuts across its links to the environment defining the
module’s input and output. Each module acts like a black box transforming data from one
form to another. The behavior of each module contributes not only to the design discipline
it is modeled after, but to the design system as a whole.

A data flow model of the design system is created with links that represent the interac-
tions between the modules. These links allow the flow of information between the different
modules. The design system becomes a set of interrelated modules that collectively can
produce a design solution (Figure 1).

Within the proposed design system, clusters of modules can act like the synthesis,
analysis, evaluation, and optimization phases discussed earlier. Together these four clus-
ters form a high level view of the design system. Each cluster could also include cliques of
nested smaller design systems.

Domain knowledge of each discipline involved in the design informs the synthesis mod-
ules to create meaningful designs and representations. The outcome of the synthesis mod-
ules is analyzed by the different discipline analysis modules to predict the properties of a
particular solution. The evaluation modules then handle the multi-objective nature of the
design. The optimization modules search the design space and automate the synthesis,
analysis and evaluation of new solutions. The process continues until the optimization has
converged and a family of acceptable solutions is found.

The design system becomes a dynamic and complex whole, interacting as a holistic
structured functional unit. The system emergent properties are not detectable through the
properties and behaviors of its modules, and can only be enucleated through a holistic ap-
proach. The solution found by this system is expected to be superior to the design found
by solving and optimizing each discipline sequentially, since it can exploit the interactions
between the disciplines.

4 Pilot Application

We now demonstrate the applicability of a Generative Multi-Performance Design System
through a fictional case. The design concept of our fictional case includes a simple al-
location of discrete but interdependent spatial components within a grid of cells located
on a rectangular site with its long edge spanning north to south. The shape of the spatial

FIGURE 4. THE SEQUENCE OF APPLICATION OF THE THREE RUL components was chosen based on aesthetic preference. These spatial components are
SETS. STARTING WITH THE FIRST CELL AT TIME T =0 AND ENDING wrapped within a skin that defines their interface with the environment (Figure 2). The Spa-

WITH THE LAST CELL AT TIME T =8 tial Components are allowed to relocate and deform to satisfy multiple performance and
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objective requirements such as adjacency, area, real-estate, proportion, thermal, and day-
lighting. This design concept entails a multi-performance space planning problem (Buffa
et al, 1964).

4.1 SYNTHESIS MODULES

The synthesis phase will consist of three modules that function together as a system.
These are: the data structure module, the rule set module, and the inference engine mod-
ule. Three main data structures are implemented. These are: Cells, Spatial Components,
and Skin. The data structure module is organized hierarchically with feedback loops be-
tween the different data structures.

A Cell represents the elementary unit of the space where the spatial components are
to be allocated. It is defined by a set of control and boundary points and construction lines.
It has knowledge about its location and its neighboring cells. It also knows the status of its
occupancy and by which component. A Spatial Component grows in a cell, inheriting all its
base geometry. When the skin is generated, the component knows which skin regions it is
associated with. The Skin is generated from the geometric configuration of components.
All three data structures also have a set of geometric attributes that include lengths, areas,
and orientations.

In regards to the rule set module, our approach draws from shape grammars pioneered
by Stiny and Gips (Stiny and Gips, 1972). A class of shape grammars that is applicable to
computer implementation is set grammars (Stiny 1982). Set grammars consider shapes
as symbolic objects and therefore do not require difficult sub-shape matching procedures.
This is the approach used here. The grammar implemented is based on three fundamental
design-rule sets (Figure 3). These rules draw from knowledge built into the data structures
and are also organized hierarchically.

The first set of design rules deals with the allocation of spatial components. The second
set of design rules deals with the deformation of the spatial components by altering the co-
ordinates of the control-points that define the spatial components in both the x and y direc-
tions. The wrapper skin uses a set of parametric rules that can generate the skin directly.
These rules compose the third rule set.

Each rule in the third rule set is applied locally to each cell and each component in a
counterclockwise fashion generating the skin supports from which the skin grows. There
are nineteen rules in this set that can capture all the different generated configurations.
Each rule divides the skin into Regions. This partition of the skin is useful for many of the
analysis modules implemented, since it determines each component exposed regions in an
additive piecewise manner (Figure 4).

The design vector that provides the inputs to the synthesis system is divided into two
types of variables, namely topological and geometrical. They are handled within the syn-
thesis system by the first and second rule sets respectively. The third rule set builds on the
output of the first and second rule sets.

The inference engine includes a scheduler and an interpreter. The scheduler applies the
rule sets sequentially in an orderly manner. The interpreter searches each rule set for the
matching rules of the current state and fires them when appropriate. The rules of the third
rule set are context sensitive and function like a simple two dimensional cellular automata
that analyses each neighbor's occupancy and decides which rule to apply. All three synthe-
sis modules were implemented in the CATIA VBA environment.

4.2 ANALYSIS MODULES

In the proposed experiment, the design concept will be broken down into multiple single-
disciplinary analysis modules in order to evaluate how well it performs from the point of
view of each discipline separately. These modules include: an Adjacency module, an Area
module, a Real-Estate module, a Proportion module, a Thermal module, and a Lighting
module (Figure b).

Since we are working at the design concept stage, the level of detail of the overall de-
sign constitutes a simplification of reality. Any rigorous analysis may go beyond the scope
and the precision of the overall design description. Therefore, the models we will use for
the different discipline modules will be based on heuristics or simplified representations to
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test the feasibility of design solutions. The modules were implemented in VB Scripts and
VBA Scripts built in Excel.

A functional rationale determines the adjacency requirements that the spatial com-
ponents have to comply with. These requirements are treated and quantified as a set of
“bond forces” that tie together all components, pair-wise. In the Adjacency module, the
actual design—in terms of the location of the spatial components—is examined and rated
against these requirements.

The Area module compares the areas of the spatial components generated by the syn-
thesis system with the areas prescribed by the architectural area program. It favours so-
lutions with a high compliance with the program and flags solutions that show a worse
compliance.

The Real-estate module compares the floor plan's net area to its gross area. It aims at
minimizing the space between the spatial components. These are areas that are allocated
to circulation, but have a lower real estate value.

The shape of the spatial components is determined by the location of the control points.
A spatial component may have a multitude of possible shapes due to the location of the
control points. The Proportion module aims at promoting more skewed or slanted shapes
that produce aesthetically more appealing layouts, while keeping elongation and distor-
tions within acceptable limits. This module filters any regular or fairly irregular shapes and
discourages highly irregular forms.

Assuming that we are building in a cold climate, it is important to provide a design
that minimizes thermal losses and favours solar gain. A simple Thermal module was de-
vised to measure the energy balance. A few simple assumptions were adopted, due to the
minimalism of the design model. Yet these simple assumptions proved capable of captur-
ing the fundamental relationship between the shape of a building and its environmental
performance.

The day lighting performance is assessed by adopting a simple geometric model. The
Lighting module measures, for each exposed region in a spatial component, the fraction of
area that is exposed to sunlight, and multiplies it by a coefficient that depends on orienta-
tion. A number of physical simplifications were also adopted.

There are two main constraint modules implemented. The first is a topological con-
straint module, and the second is geometric constraint module. Both modules act on the
design vectors and not on the design solution generated from the synthesis system.

In the topological constraints module the spatial components locations are tested
against the adjacency requirements specified by the designer. The topological constraints
ensure that the number of violated strong-bond relationships does not exceed a pre-set
threshold. The geometric module tests the locations of control points and prevents any ex-
cessive distortion of the grid that might create non-convex spatial components.

In addition to the constraints modules, a constants and data storage module was also
implemented. This module contains all the constants and parameters used by the different
modules such as location, climate, and area program among others.

4.3 EVALUATION MODULES

There are three evaluation modules implemented. The first is a flow control module that
evaluates if the design vector violates the constraint modules in the analysis cluster. It acts
as a switch directing the data flow to one of the other two evaluation modules. The other
two modules are the feasible design and infeasible design modules. The infeasible design
module is triggered by the flow control module if the constraints are severely violated. If
the constraints are not violated the feasible design module is triggered.

Although the constraints are handled by the optimization modules, the flow control
module is important from a design-process management point of view. If the design vector
is infeasible the flow control module would bypass the synthesis and analysis modules sav-
ing extensive computational time. The infeasible design module simply signals the violation
to the optimization modules and ranks the design solution in proportion to the number of
violated constraints.

The feasible design module on the other hand triggers the synthesis and analysis mod-
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ules. All the ratings (Jarea, Jeire, €tc.) of the disciplinary performances that originate from
the analysis modules converge into the feasible design evaluation module, where they are
aggregated to generate an overall evaluation of the design, according to the standard sca-
larization approach.

4.4 OPTIMIZATION MODULES

The optimization modules consist of two groups of modules. The first contains the optimi-
zation algorithm, and the second handles the design vectors. The design vector contains
the design variables. It guides the design solutions by informing the synthesis system, like
the DNA of an organism. Two major categories of design variables have been considered
in our experiment and are implemented in two different modules these are: the topological
variables module and the geometric variables module.

The topological variables module defines the cell location of each spatial component.
Instead of creating constraints that prohibit the allocation of two different spatial compo-
nents in the same cell, this check is performed implicitly within this module. This guaran-
tees that no two spatial components are placed in the same cell.

The geometric variables module on the other hand guarantees that the control points
in arow or a column remain distributed in an organized manner in order to minimize singu-
larities while generating the cells.

Due to the nature of the design space, the search algorithm implemented should not
be limited by restrictions of continuity or existence of derivatives. Therefore a Genetic Al-
gorithm (GA) was implemented. The evolution starts from a population of randomly gener-
ated design solutions, in addition to a few seeded acceptable design solutions to guide the
evolution. The evolution happens in generations. For each generation, the fitness of every
design solution in the population is evaluated. In our experiment this fitness is represented
by the multi-disciplinary performance J formulated in the evaluation modules.

Constraints are implemented using penalty functions. If a solution does not comply
with the constraints in the system a penalty is added to the fitness of the design solution
according to the degree of violation.

Due to the existence of multi-objectives the aim is not to produce a global optimum
solution, but rather to direct the evolutionary process to produce populations of good
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solutions. These solutions would be used to study the tradeoffs between the different
objectives.

4.5 BREEDING DESIGN SOLUTIONS USING GMPDS

As opposed to the decomposition of the design concept into modules, the process of as-
sembling the Generative Multi-Performance Design System is a bottom up approach. After
all the modules discussed earlier have been built and their validity verified, the data flow
model of the design system is implemented (Figure 6).

The three synthesis modules namely: the rule set module, the data structure module,
and the inference engine work together as a unit forming a synthesis subsystem. This syn-
thesis system receives the decoded design variables from the design vectors module in the
optimization cluster and outputs a design solution (phenotype) that can be analyzed.

Within the analysis cluster, each of the six analysis modules receives from the synthesis
system the relevant data. Each module then provides a measurement of the design perfor-
mance for that module.

The evaluation modules controls the flow of data, by making sure that those designs
that do not comply with the constraints are not sent to the synthesis system to be further
developed into a full design solution (phenotype). If the constraints are not violated, the
performance measurements generated by the different analysis modules are then aggre-
gated into an objective function that acts as a figure of merit.

The GA in the optimization cluster then evaluates the fitness of the design solutions in
the population. Several solutions are chosen based on their fitness and undergo genetic
transformations to form a new population. The GA runs until satisfactory fitness levels are
reached. The model was implemented in the Model Center environment.

The GMPDS demonstrated promising results (Figure 7). It managed to generate inter-
esting solutions to our multi-performance space planning problem. It managed to improve
the overall performance of the design solutions beyond our initial seeded solutions. As ex-
pected, due to the site restrictions the spatial components were forced to span from north
to south. However, the design solutions in the final populations tended to be compact in
their shape. This implies that the design drivers were mostly the adjacency and real-estate
modules which were highly weighted in our objective function. As had been expected, both
the lighting and thermal modules were in clear conflict with each other. Since they were
both given identical weights, they tended to balance out each other. The program and pro-
portion modules although being satisfied, did not seem to have an obvious effect on driv-
ing the design solutions.

5 Conclusion

In this paper a framework for building a Generative Multi-Performance Design System was
introduced and its advantages investigated. The GMPDS should be considered domain in-
dependent. Its potential was demonstrated through a pilot project in which a multi-per-
formance space planning problem was considered. The design system was able to suc-
cessfully search the design space and find interesting and unexpected solutions. Since
performance criteria were a driving force in the generation of design solutions, the system
provided insight into the main design drivers. Due to the multi-objective nature of the sys-
tem, the aim was not to produce a single optimal design solution but instead to generate
populations of valuable solutions.

The solutions found by the system are expected to be superior to the design found by
solving and optimizing each discipline sequentially, since the proposed design system can
exploit the interactions between the disciplines and can recognize the potential benefits
of mathematically predicting and analyzing the integrated behavior of design solutions.
The argument is that an integrated design system will yield higher quality designs with im-
proved performance.

Based on our findings it is concluded that Generative Multi-Performance Design Sys-
tems (GMPDS) are capable of producing excellent results. They build on the strengths
inherent in both generative synthesis systems and multi-performance analysis and
optimization.
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Future work on the pilot project would include generating Pareto sets for the multi-ob-
jective formulation in the objective function to remove biases towards each criterion. This
will help investigate tradeoffs between different performance requirements and analyze
sensitivity and design drivers. In addition, we would like to develop the synthesis system to
include 3D models of our generated solution and possibly add more detailed analysis mod-
ules with higher fidelity.
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